skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khandagale, Sujay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polysynthetic languages present a challenge for morphological analysis due to the complexity of their words and the lack of high-quality annotated datasets needed to build and/or evaluate computational models. The contribution of this work is twofold. First, using linguists’ help, we generate and contribute high-quality annotated data for two low-resource polysynthetic languages for two tasks: morphological segmentation and part-of-speech (POS) tagging. Second, we present the results of state-of-the-art unsupervised approaches for these two tasks on Adyghe and Inuktitut. Our findings show that for these polysynthetic languages, using linguistic priors helps the task of morphological segmentation and that using stems rather than words as the core unit of abstraction leads to superior performance on POS tagging. 
    more » « less
  2. Polysynthetic languages present a challenge for morphological analysis due to the complexity of their words and the lack of high-quality annotated datasets needed to build and/or evaluate computational models. The contribution of this work is twofold. First, using linguists’ help, we generate and contribute high-quality annotated data for two low-resource polysynthetic languages for two tasks: morphological segmentation and part-of-speech (POS) tagging. Second, we present the results of state-of-the-art unsupervised approaches for these two tasks on Adyghe and Inuktitut. Our findings show that for these polysynthetic languages, using linguistic priors helps the task of morphological segmentation and that using stems rather than words as the core unit of abstraction leads to superior performance on POS tagging. 
    more » « less
  3. While other areas of machine learning have seen more and more automation, designing a high-performing recommender system still requires a high level of human effort. Furthermore, recent work has shown that modern recommender system algorithms do not always improve over well-tuned baselines. A natural follow-up question is, "how do we choose the right algorithm for a new dataset and performance metric?" In this work, we start by giving the first large-scale study of recommender system approaches by comparing 24 algorithms and 100 sets of hyperparameters across 85 datasets and 315 metrics. We find that the best algorithms and hyperparameters are highly dependent on the dataset and performance metric. However, there is also a strong correlation between the performance of each algorithm and various meta-features of the datasets. Motivated by these findings, we create RecZilla, a meta-learning approach to recommender systems that uses a model to predict the best algorithm and hyperparameters for new, unseen datasets. By using far more meta-training data than prior work, RecZilla is able to substantially reduce the level of human involvement when faced with a new recommender system application. We not only release our code and pretrained RecZilla models, but also all of our raw experimental results, so that practitioners can train a RecZilla model for their desired performance metric: https://github.com/naszilla/reczilla. 
    more » « less
  4. Unsupervised cross-lingual projection for part-of-speech (POS) tagging relies on the use of parallel data to project POS tags from a source language for which a POS tagger is available onto a target language across word-level alignments. The projected tags then form the basis for learning a POS model for the target language. However, languages with rich morphology often yield sparse word alignments because words corresponding to the same citation form do not align well. We hypothesize that for morphologically complex languages, it is more efficient to use the stem rather than the word as the core unit of abstraction. Our contributions are: 1) we propose an unsupervised stem-based cross-lingual approach for POS tagging for low-resource languages of rich morphology; 2) we further investigate morpheme-level alignment and projection; and 3) we examine whether the use of linguistic priors for morphological segmentation improves POS tagging. We conduct experiments using six source languages and eight morphologically complex target languages of diverse typologies. Our results show that the stem-based approach improves the POS models for all the target languages, with an average relative error reduction of 10.3% in accuracy per target language, and outperforms the word-based approach that operates on three-times more data for about two thirds of the language pairs we consider. Moreover, we show that morpheme-level alignment and projection and the use of linguistic priors for morphological segmentation further improve POS tagging. 
    more » « less
  5. With the increasing interest in low-resource languages, unsupervised morphological segmentation has become an active area of research, where approaches based on Adaptor Grammars achieve state-of-the-art results. We demonstrate the power of harnessing linguistic knowledge as priors within Adaptor Grammars in a minimally-supervised learning fashion. We introduce two types of priors: 1) grammar definition, where we design language-specific grammars; and 2) linguistprovided affixes, collected by an expert in the language and seeded into the grammars. We use Japanese and Georgian as respective case studies for the two types of priors and introduce new datasets for these languages, with gold morphological segmentation for evaluation. We show that the use of priors results in error reductions of 8.9 % and 34.2 %, respectively, over the equivalent state-of-the-art unsupervised system 
    more » « less